
Domain-Specific Languages for Societal Challenges Multi-objective optimisation and exploration of system simulations

Patrik Jansson

Functional Programming unit, Chalmers University of Technology

 $\mathrm{DSL} o \delta \sigma \lambda$

Patrik Jansson, background

Physics BSC

Mathematics MSC Domain-Specific

angnages

 long term goal: create systems (theories, programming languages, libraries and tools) which make it easy to develop reusable software components together with proofs of their correctness.

 $DSL \rightarrow \delta \sigma \lambda$ DSLso(Math)

- long term goal: create systems (theories, programming languages, libraries and tools) which make it easy to develop reusable software components together with proofs of their correctness.
- "software component" could be "agent-based model"

DSL -> Sox

- long term goal: create systems (theories, programming languages, libraries and tools) which make it easy to develop reusable software components together with proofs of their correctness.
- "software component" could be "agent-based model"
- ... expressed in a Domain-Specific Language (for ABMs)

What is a Domain Specific Language (DSL)?

- A DSL is an abstraction of a particular domain, supporting a domain specialist in building a model.
- An expression in a DSL can be seen as a formalised notion, a program, or a specification.
- Such expressions can often be executed, but also analysed as structured data.

- A DSL is an abstraction of a particular domain, supporting a domain specialist in building a model.
- An expression in a DSL can be seen as a formalised notion, a program, or a specification.
- Such expressions can often be executed, but also analysed as structured data.

DSL examples:

- Mathematics: Euclidean geometry a DSL about points, lines, circles, etc.; or Arithmetic expressions (like (x + y)/2)
- Tools: Excel, General Algebraic Modeling System (GAMS), LexiFi (financial contracts), ...

My work on Societal Challenges: Climate

2007-: work with Potsdam Inst. for Climate Impact Research (PIK)

- PIK wanted correct implementations of models for simulating global systems (both for economy and climate)
- I knew Algebra of Programming, and a long-term collaboration started
- with Cezar Ionescu, Nicola Botta, Carlo Jaeger, and Sarah Wolf
- Agent-based models early on, specified in TEX, Haskell, Agda

My work on Societal Challenges: Climate

2007-: work with Potsdam Inst. for Climate Impact Research (PIK)

- PIK wanted correct implementations of models for simulating global systems (both for economy and climate)
- I knew Algebra of Programming, and a long-term collaboration started

. . .

- with Cezar Ionescu, Nicola Botta, Carlo Jaeger, and Sarah Wolf
- Agent-based models early on, specified in TFX, Haskell, Agda

Agenti segreti 003 cj. May 17, 2009	In the transition functions (and the functions used as components therein), the following parameters are used :	
	$\alpha, \nu, \rho \in (0, 1)$ (7))
	$a, b, c \in \mathbb{R}_{>1}$	
nt defines specifications for a program representing three a dynamical system with discrete time, as is the system	$\delta \in [0, 1]$	
	$\hat{r}, \chi, \zeta, \hat{v} \in \mathbb{R}_{>0}$	
	The following functions are used as components of transition functions:	
	$f_{k}: K \times L \times Z \times W \rightarrow K$ $f_{k}(k \mid z, w) = k \cdot (1 - \delta) + f_{k}(k \mid z) - l \cdot w$,

$$\begin{array}{ll} f_k: K \times L \times Z \times W \to K & f_k(k,l,z,w) = k^* (1-\alpha) + f_y(k,l,z) - l \cdot w & (8) \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\$$

$$\begin{array}{c} DSL \rightarrow \delta \sigma \lambda \\ DSL^{so(Math)} \end{array}$$

The present document defines specifications for a r agents. Each agent is a dynamical system with discr as a whole

Agents

The agents are:

- a firm (with state space F and observable set O_F).
- a working household (with state space H_{w} and observable set O_{w}).
- a wealthy household (with state space H_r and observable set O_r).

DSLs for societal challenges

- Workshop on "Domain Specific Languages for Economical and Environmental Modelling (DSL4EE)" 2011, Marstrand, Sweden.
- developed domain-specific high-level concepts for multi-agent modelling, sequential decision problems and for computational vulnerability assessment
- successfully applied software specification to economy theory and to climate impact research
 - Dependently-Typed Programming in Scientific Computing -Examples from **Economic Modelling**, Ionescu & Jansson, 2013
 - **Testing versus proving** in climate impact research, lonescu & Jansson, 2013

Funded by Global Systems Dynamics and Policy (GSDP), FP7 FET-Open project (1.3M EUR, 2010–13)

Selected publications (cont.):

- **Domain-Specific Languages of Mathematics**: Presenting Mathematical Analysis using Functional Programming, 2016
- Sequential decision problems, dependent types and generic solutions, 2017
- Contributions to a computational theory of **policy advice** and avoidability, 2017
- The impact of uncertainty on optimal emission policies, 2018

Funded by

- Global systems Rapid Assessment tools through Constraint FUnctional Languages (GRACeFUL, 2.4M EUR, 2015–2017)
- Centre of excellence for Global Systems Science (CoeGSS), 4.5M EUR, 2015 2018

- Project: OptiFun: Optimising Fusion with Generative Programming, 3M SEK, 2022–23
- *Domain-Specific Languages of Mathematics*, College Publications, 2022
- **Responsibility Under Uncertainty**: Which Climate Decisions Matter Most?, 2022 (under review)

Related project: Tipping Points in the Earth System (TiPES, 8.5M EUR, 2019–2024)

The object of study is an expensive, black-box function $e: Y \to X$ where we have controls $Y = \mathbb{R}^n$ and observations $X = \mathbb{R}^m$

The object of study is an expensive, black-box function $e: Y \to X$ where we have controls $Y = \mathbb{R}^n$ and observations $X = \mathbb{R}^m$

In the simplest form (and with m = 1), the aim is to just find an input-output-pair (y^*, x^*) at a (global) minimum of e:

$$x^* = e(y^*)$$
 and $\forall y : Y$. $x^* \leqslant e(y)$.

This search can be done using Bayesian optimisation or with other optimisation techniques.

The object of study is an expensive, black-box function $e: Y \to X$ where we have controls $Y = \mathbb{R}^n$ and observations $X = \mathbb{R}^m$

In the simplest form (and with m = 1), the aim is to just find an input-output-pair (y^*, x^*) at a (global) minimum of e:

$$x^* = e(y^*)$$
 and $\forall y : Y$. $x^* \leqslant e(y)$.

This search can be done using Bayesian optimisation or with other optimisation techniques.

Unfortunately, it is in general impossible to implement this specification: as the set $Y = \mathbb{R}^n$ is infinite, for any finite number of points evaluated, there is always the risk that some other point is better.

The object of study is an expensive, black-box function $e: Y \to X$ where we have controls $Y = \mathbb{R}^n$ and observations $X = \mathbb{R}^m$

In the simplest form (and with m = 1), the aim is to just find an input-output-pair (y^*, x^*) at a (global) minimum of e:

$$x^* = e(y^*)$$
 and $\forall y : Y$. $x^* \leqslant e(y)$.

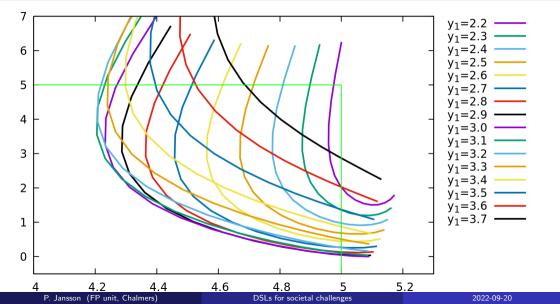
This search can be done using Bayesian optimisation or with other optimisation techniques.

Unfortunately, it is in general impossible to implement this specification: as the set $Y = \mathbb{R}^n$ is infinite, for any finite number of points evaluated, there is always the risk that some other point is better.

Fortunately, if we require a certain degree of smoothness of e (continuous, with concrete bounds on its derivatives), and if settle for a "good" point (within some ϵ of the true optimum), it becomes implementable.

Optimisation example: Part 1, figure

Y = controls X = objectives 1)2 1) XZ $e: Y \rightarrow X$ Χ, \geq


Optimisation example: Parameters & uncertainty

Y = controls P = parameter space X = objectives $a: X \longrightarrow X$ ≯y, sensitivity stability.

Safe controls / safe operational space

Y = controls X=objectives X2 0:Y->>) Sx = safe operational Sy = safe

Numeric simulation example of safe operational space

In our intended application we have a *multi-objective* optimisation problem.

In our intended application we have a *multi-objective* optimisation problem.

The typical optimisation framework will insist on just one measurement which requires a way to "measure" (combine) the objectives. This is often ad-hoc and could be problematic (ethics, differing stakeholders, etc.)

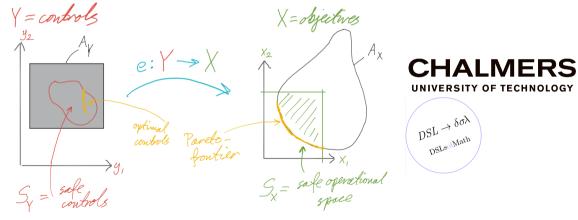
In our intended application we have a *multi-objective* optimisation problem.

The typical optimisation framework will insist on just one measurement which requires a way to "measure" (combine) the objectives. This is often ad-hoc and could be problematic (ethics, differing stakeholders, etc.)

Our aim here is to visualise the objective space, illustrating the trade-off between the objectives (the Pareto frontier, etc.).

This allow users (stakeholders) to choose which is the best compromise.

Exploring controls / different kinds of optima


Y = controls X= objectives Ax X2 $\rho: Y \rightarrow X$ Pareto-Imitier S_x = safe operational space Sy = safe

Pareto frontier + its inverse image

Y = controls X= objectives Ax X2 e:Y->X optimal combols Pareto-fontier S_x = safe operational space Sy = safe

Domain-Specific Languages for Global Systems Science

- Multi-objective "optimisation" / exploration
- Challenges: uncertainty / curse of dimensionality
- Domain-Specific Languages for high-level modelling

